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We determine the stationary two-point correlation function of the one-dimen-
sional KPZ equation through the scaling limit of a solvable microscopic model,
the polynuclear growth model. The equivalence to a directed polymer problem
with specific boundary conditions allows one to express the corresponding
scaling function in terms of the solution to a Riemann–Hilbert problem related
to the Painlevé II equation. We solve these equations numerically with very high
precision and compare our, up to numerical rounding exact, result with the
prediction of Colaiori and Moore (1) obtained from the mode coupling approx-
imation.
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1. INTRODUCTION

In their well-known work (2) Kardar, Parisi, and Zhang argue that surface
growth through random ballistic deposition can be modeled by a stochastic
continuum equation, which in the case of a one-dimensional substrate
reads

“th=
1
2 l(“xh)

2+n “2xh+g. (1.1)

Here h(x, t) is the height at time t at location x relative to a suitable refer-
ence line. g(x, t) is space-time white noise of strength D, Og(x, t) g(xŒ, tŒ)P=
Dd(x−xŒ) d(t− tŒ), and models the randomness in deposition. n “2xh is a not
further detailed smoothening mechanism. The important insight of ref. 2 is



to observe that the growth velocity is nonlinear, in general, and is relevant
for the large scale properties of the solution to (1.1). To simplify, the
growth velocity is expanded in the slope. The first two terms can be
absorbed through a suitable choice of coordinate frame. The quadratic
nonlinearity in (1.1) is relevant and higher orders can be ignored, unless
l=0.

The one-dimensional KPZ equation (1.1) is regarded as exactly solved
in the usual terminology. In fact, what can be obtained is the dynamic
scaling exponent z=3/2. (2–4) No other universal quantity has been com-
puted exactly so far. In our contribution we will improve the situation and
explain how to extract the scaling function for the stationary two-point
function. A few other universal quantities can be computed as well. But
they have been discussed already elsewhere. (5–7)

In ref. 4 a mode-coupling equation for the two-point function is
written down, in essence following the scheme from critical dynamics and
kinetic theory. At the time only z=3/2 and a few qualitative properties
could be extracted from the mode-coupling equation. In ref. 8 this equation
is solved numerically. Such computations are repeated in ref. 1 with greatly
improved precision and using a more convenient set of coordinates. Thus
for the 1D KPZ equation we are in the unique position of an exact solution
and an accurate numerical solution to the mode-coupling equation with no
adjustable parameters. As will be explained below, given the uncontrolled
approximation, mode-coupling does surprisingly well.

To attack (1.1) directly does not seem to be feasible, a situation which
is rather similar to the one for two-dimensional models in equilibrium sta-
tistical mechanics. For example, the Ginzburg–Landau f4-theory is given
through the (formal) functional measure

Z−1 D
x ¥ R

2
df(x) exp 5−F d2x((Nf)2+gf2+f4)6 (1.2)

for the scalar field f. (1.2) is not the proper starting point for computing
the exact two-point scaling function at the critical coupling gc. Rather one
discretizes through the lattice Z2 and replaces the f-field by Ising spins ±1.
Then, following, e.g., ref. 9, the scaling function at and close to criticality
can be obtained. By universality this scaling function is the one of (1.2).
(While certainly true, to establish universality is difficult and carried out in
a few cases only. (10)) In the same spirit we replace (1.1) by a discrete model,
where the most convenient choice seems to be the polynuclear growth
(PNG) model.

Before explaining the PNG model let us review the standard scaling
theory for (1.1). If the initial conditions h(x, 0) of the KPZ equation are
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distributed according to two-sided Brownian motion, then formally the
distribution of h(x, t)−h(0, t) is again two-sided Brownian motion. There-
fore it is natural to define the stationary time correlation

C(x, t)=O(h(x, t)−h(0, 0)−tO“thP)2P, (1.3)

where from the height difference the average displacement is subtracted. By
assumption

C(x, 0)=A |x| (1.4)

with roughness amplitude A=D/n to ensure stationarity in time. If
z=3/2, then C(x, t) scales as

C(x, t)3 t2/3g(const · x/t2/3), as x, tQ. (1.5)

with a universal scaling function g(y) having the asymptotics g(y)Q c0 > 0
for yQ 0 and g(y) ’ c. |y| for |y|Q.. In order to define g as a dimen-
sionless function we fix the proportionality constants in (1.5) as appropri-
ate combinations of l and A,

g(y)=lim
tQ.

C((2l2A t2)1/3 y, t)
(12 lA

2t)2/3
, (1.6)

where the particular choice of numerical prefactors is in principle arbitrary.
The factor 2−2/3 in the denominator is chosen in order to conform with the
convention for the GUE Tracy–Widom distribution. (11) The factor 21/3 in
the argument of the numerator differs from the convention used by Baik
and Rains (12) by a factor 2 but conforms with the definition of the closely
related Airy process (7) and has the further advantage to absorb a lot of
prefactors in the equations defining g(y). Note however, that the expo-
nents for the parameters l[x

2

th], n[
x2

t ], and D[h
2x
t ] are fixed uniquely by

dimensional reasoning.
We remark that the slope “xh(x, t) is space-time stationary in the usual

sense. For fixed t, xW “xh(x, t) is white noise with strength A. Since
O“xhP=0, the standard 2-point function is

O“xh(0, 0) “xh(x, t)P=
1
2 “
2
xC(x, t). (1.7)

This relation and the asymptotic behavior of g, g(y)/|y|Q 2 as yQ.,
motivates the definition of a second scaling function,

f(y)=1
4 gœ(y), (1.8)

which by definition has integral normalized to one and which will be shown
to be positive in the next section.
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In the sequel we will analyze the distribution function for the height
differences in the stationary PNG model. As shown in ref. 12, they can be
represented in terms of certain orthogonal polynomials, which lead to
recursion relations connected to the Painlevé II differential equation. (13, 14)

The asymptotic analysis is carried out in ref. 12. Our own contribution is
twofold: (i) We observe that the stationary PNG model maps to a last
passage percolation with boundaries. (6) (ii) The expressions in ref. 12 are
given in terms of certain differential equations and the extraction of the
scaling function g requires a careful numerical integration. This is one
central point of our article. We will provide then plots of the structure
function and give a comparison with the mode-coupling theory.

2. THE POLYNUCLEAR GROWTH MODEL

The polynuclear growth (PNG) model is a model for layer-by-layer
growth through deposition from the ambient atmosphere. The surface is
parameterized by a time dependent integer-valued height function h(x, t),
t ¥ R, above a one-dimensional substrate, x ¥ R. Thus the height function
consists of terraces bordered by steps of unit height. The up-steps move to
the left and the down-steps to the right with speed 1. Steps disappear upon
collision. In addition to this deterministic dynamical rule new islands of
unit height are nucleated randomly with space-time density 2 on top of
already existing terraces. The corresponding stochastic process h(x, t) is
well defined even in infinite volume (cf. ref. 15 for the closely related
Hammersley particle process).

Of interest to us here is the stationary growth process, which means
that the slope “xh(x, t)=r(x, t) is stationary in space-time. One can think
of r(x, t) as the density of a particle/antiparticle process. The particles are
located at the up-steps and thus move with velocity −1, the antiparticles
are located at the down-steps and move with velocity 1. Upon collision
particle/antiparticle pairs annihilate. In addition, with space-time density 2,
a particle/antiparticle pair is created with the particle moving to the left,
the antiparticle to the right. To make r stationary, one prescribes at t=0
up-steps Poisson distributed with density r+ and down-steps independently
Poisson distributed with intensity r− such that

r+r−=1. (2.1)

This measure for steps is stationary under the PNG dynamics. The mean
slope is given by

u=r+−r−=O“xh(x, t)P, (2.2)
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which is the only remaining free parameter. For fixed t, xW h(x, t)−h(0, t)
is a (two-sided) random walk with rate r± for a jump from n to n±1. It
has average u and variance r++r− , which implies for the roughness
amplitude

A(u)=`4+u2. (2.3)

For the growth velocity one obtains

v(u)=O“thP=r++r−=`4+u2. (2.4)

Given r(x, t) the height h(x, t) is determined only up to a constant
which we fix as h(0, 0)=0. To emphasize that only height differences
count, h(0, 0) is sometimes kept in the formulas.

The stationary process with slope u transforms to the stationary
process with slope 0 through the Lorentz transformation

xŒ=(1−c2)−1/2 (x−ct), tŒ=(1−c2)−1/2 (t−cx), (2.5)

with the speed of ‘‘light’’ equal to 1 and the velocity parameter c=
−u/`4+u2. Thus it suffices to restrict ourselves to u=0 which we do
from now on. In particular r+=1=r− . O ·P and E refer to the stationary
density field at slope u=0.

The central objects are the height-height correlation

C(x, t)=O(h(x, t)−h(0, 0)−2t)2P (2.6)

and the closely related two-point function for the density,

S(x, t)=Or(x, t) r(0, 0)P. (2.7)

They are related as

1
2 “
2
xC(x, t)=

1
2 “
2
xE((h(x, t)−h(0, 0)−2t)

2)

=“xE(r(x, t)(h(x, t)−h(0, 0)−2t))

=“xE(r(0, t)(h(0, t)−h(−x, 0)−2t))

=E(r(0, t) r(−x, 0))

=S(x, t). (2.8)

The height correlation is convex, equivalently

S(x, t) \ 0. (2.9)
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Fig. 1. The trajectory of a second-class particle.

To prove this property we show that the structure function S(x, t) can be
regarded as the transition probability for a second class particle starting at
the origin. Its initial velocity is ±1 with probability 1

2 , as for the ‘‘first-
class’’ up/down-steps. In contrast to an ordinary step the second class
particle is never destroyed upon colliding with another step. Rather it eats
up the step encountered and, by reversing its own direction of motion,
continues along the trajectory of the absorbed step, cf. Fig. 1. class particle
is added as

r (s)(x, 0)=r(x, 0)+s d(x), s=±1. (2.10)

r (s)(x, 0) evolves to r (s)(x, t) with nucleation events identical to the one for
r(x, t). By construction, if Xt denotes the position of the second class
particle at time t,

r (s)(x, t)−r(x, t)=sd(x−Xt). (2.11)

Noting that by the Poisson property r (s)(x, 0) is given by r(x, 0) condi-
tioned on the presence of either an up-step (s=+1) or down-step (s=−1)
at the origin, we obtain

0 [ pt(x)=
1
2

C
s=±1

E(s(r (s)(x, t)−r(x, t)))=
1
2

C
s=±1

E(sr (s)(x, t))

=lim
d s 0

1
2

C
s=±1

sE 1r(x, t) : F d
−d
r(y, 0) dy=s2

=lim
d s 0

1
2

C
s, sŒ=±1

ssŒ
P{>d−d r(x+y, t) dy=sŒ, >d−d r(y, 0) dy=s}

2 d P{>d−d r(y, 0) dy=s}

=
1
2
E(r(x, t) r(0, 0))=

1
2
S(x, t). (2.12)
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For arbitrary slope u the normalization of S(x, t) would be given by
v(u)=`4+u2 and the mean of pt(x) evolves along the characteristics of
the macroscopic evolution equation “tu=−“xv(u). Thus

F S(x, t) dx=`4+u2, and F x S(x, t) dx=−tu. (2.13)

3. THE DISTRIBUTION FUNCTIONS FOR THE HEIGHT DIFFERENCES

For the PNG model the distribution function for the height difference
h(x, t)−h(0, 0) satisfies certain recursion relations, which are the tool for
analyzing the scaling limit when tQ. and x=y t2/3 with y=O(1). The
second moments yield C(x, t) and therefore by (2.8) also S(x, t).

Since the nucleation events are Poisson, h(x, t)−h(0, 0) depends only
on the events in the backward light cone {(xŒ, tŒ) ¥ R2, 0 [ tŒ [ t,
|x−xŒ| [ t− tŒ} and the initial conditions at t=0. Along the line {xŒ=tŒ}
the down-steps are Poisson distributed with line density `2 and corre-
spondingly for the up-steps along the line {xŒ=−tŒ}. This property can be
deduced from the uniqueness of the stationary state at given slope and the
Lorentz invariance (2.5) in the limit cQ ±1. Thus h(x, t)−h(0, 0) is
determined by the nucleation events in the rectangle Rx, t={(xŒ, tŒ) ¥ R2,
|xŒ| [ |tŒ|, |x−xŒ| [ t− tŒ} together with the said boundary conditions.
h(x, t)−h(0, 0) can be reexpressed as a directed last passage percolation
according to the following rules: Inside Rx, t there are Poisson points with
density 2. Along the two lower edges of Rx, t there are independently
Poisson points with line density `2. A directed passage from (0, 0) to
(x, t) is given through a directed path (polymer). It is a piecewise linear
path in the plane, starts at (0, 0) and ends at (x, t), alters its direction only
at Poisson points, and is time-like in the sense that for any two points
(xŒ, tŒ), (xœ, tœ) on the path one has |xŒ−xœ| [ |tŒ−tœ|. Note that, once the
directed path leaves one of the lower edges to move into the bulk, it can
never return. By definition the length of a directed path equals the number
of Poisson points traversed. With these conventions

h(x, t)−h(0, 0)=maximal length of a directed path from (0, 0) to (x, t).
(3.1)

We remark that in general there are several maximizing paths, their
number presumably growing exponentially with t.

Under the Lorentz transformation (2.5) the distribution for the height
differences (3.1) does not change. Therefore, we might as well transform
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R(x, t) to a square. By an additional overall scaling by `2 one arrives at a
v×v square, v=`t2−x2, with bulk density 1 and the line densities a−=

a=`(t−x)(t+x) for the lower left, resp. a+=1/a for the lower right
edge. In this way we have recovered precisely the setting in refs. 12 and 13
with t replaced by v. Baik and Rains derive an explicit expression for the
height distribution in terms of Toeplitz determinants, which can be further
simplified by means of corresponding orthogonal polynomials.

Let us state the result for the distribution function of h(x, t)−h(0, 0),

Fx, t(n)=P{h(x, t)−h(0, 0) [ n}

=Gn(a) F(n)−Gn−1(a) F(n−1). (3.2)

For fixed v the functions g and F are given in terms of the monic polyno-
mials pn(z)=zn+O(zn−1), which are pairwise orthogonal on the unit circle
|z|=1 with respect to the weight ev(z+z

−1). Their norm Nn is given by

Opn, pmP=dn, mNn (3.3)

with Op, qP=? p(z) q(z−1) ev(z+z
−1)(2piz)−1 dz. One has

F(n)=e−v
2
D
n−1

k=0
Nk, (3.4)

where F(n) itself is the distribution function of the maximal length of a
directed path in the case a+=0=a− . Thus limnQ. F(n)=1 and

Gn(a)=e−v(a+a
−1)Nn C

n

k=0
N−1k pk(−a) pk(−a

−1)

=e−v(a+a
−1)((1−n) pn(−a) pn(−a−1)

−ap −n(−a) pn(−a
−1)−a−1pn(−a) p

−

n(−a
−1)). (3.5)

Defining the dual polynomials pg
n (z)=z

npn(z−1), the second equality in
(3.5) is an easy consequence of the Christoffel–Darboux formula, (16)

Nn C
n−1

k=0

pk(a) pk(b)
Nk

=
pgn (a) p

g
n (b)−pn(a) pn(b)
1−ab

, (3.6)

valid for a, b ¥ C, ab ] 1 and extended by l’Hospital’s rule to ab=1, and
the trivial relation

pg
n (z) z

−1pg−
n (z

−1)+z p −n(z) pn(z
−1)=npn(z) pn(z−1)=np

g
n (z) p

g
n (z

−1). (3.7)
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Taking only the leading order of a in (3.6) one obtains the well-known
relations

pn+1(z)=zpn(z)+pn+1p
g
n (z),

pgn+1(z)=zpn+1pn(z)+p
g
n (z), (3.8)

Nn+1=Nn(1−p
2
n+1)

which are closed given pn=pn(0) for n \ 0. For the particular weight func-
tion ev(z+z

−1) one can derive a nonlinear recursion relation for the pn’s,

pn=−
v
n
(pn+1+pn−1)(1−p

2
n), (3.9)

with initial values p0=1, p1=−
I1(2v)
I0(2v)

. Ik(2v)=(2p)−1 >2p0 e ikhe2v cos h dh is the
modified Bessel function of order k and thus N0=I0(2v). Equation (3.9) is
the discrete Painlevé II equation. It has been derived in the context of
orthogonal polynomials for the first time in ref. 14, and later on more or
less independently in refs. 13, 17–19. The differential equations for pn, p

g
n ,

p −n(z)=(n/z+v/z
2−pn+1 pnv/z) pn(z)+(pn+1v/z−pnv/z2) p

g
n (z)

pg−n (z)=(−pn+1v/z+pnv) pn(z)+(−v+pn+1 pnv/z) p
g
n (z),

(3.10)

can be shown to hold by a tedious but straightforward induction, using
(3.8) and (3.9). They are implicitly derived in ref. 13, from which we
learned their actual form. In ref. 20 an integral expression is obtained for
the derivative of orthogonal polynomials on the circle with respect to
(up to some technical conditions) an arbitrary weight function. Specializing
to the weight ev(z+z

−1) results in a differential-difference equation equivalent
to (3.10).

Of course, the mean of the probability distribution Fx, t(n)−Fx, t(n−1)
is 2t and its variance, the correlation function (2.6), is given by

C(x, t)=C
n \ 0
(2(n−2t)−1) Fx, t(n). (3.11)

Thus to establish (1.5), one has to understand the scaling properties of the
distribution function Fx, t(n). Let us introduce the new variables s, y
defined by

n=2v+v1/3s, (3.12)

x=v2/3y, (3.13)
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where v=`t2−x2 is regarded as fixed when varying n and x. In ref. 12 the
different scaling variable w=1

2 y is used, which leads to a string of factors
of 2, avoided by our convention. Setting

Rn=−(−1)n pn, (3.14)

we rewrite (3.9) as

Rn+1−2Rn+Rn−1=
(nv−2) Rn+2R

3
n

1−R2n
. (3.15)

Under the scaling (3.13), Rn=v−1/3u(v−1/3(n−2v))+O(v−1), it becomes the
Painlevé II equation

uœ(s)=2u(s)3+su(s), (3.16)

in the limit vQ.. The starting value R0=−1 is consistent with the left
asymptotics of u(s) only if

u(s) ’ −`−s/2 as sQ −., (3.17)

which singles out the Hastings–McLeod solution to (3.16). (21) This particu-
lar solution will be denoted by u(s) and we conclude that

u(s)=lim
vQ.
v1/3R[2v+v1/3s], (3.18)

provided the limit exists (a complete proof is the main content of ref. 22).
u(s) < 0 and u has the right asymptotics

u(s) ’ −Ai(s) as sQ.. (3.19)

At this point we can derive the scaling limit for F(n). It is the GUE
Tracy–Widom distribution function (11)

FGUE(s)=e−V(s), V(s)=−F
.

s
v(x) dx, v(s)=(u(s)2+s) u(s)2−uŒ(s)2,

(3.20)

which appears already as the limiting height distribution for nonstationary
curved selfsimilar growth. (23) Since vŒ(s)=u(s)2, one has v1/3 logN[2v+v1/3s]
Q v(s) and F([2v+v1/3s])Q FGUE(s) as vQ..

Next we turn to the scaling limit for the orthogonal polynomials. For
it to be nontrivial we set

Pn(a)=e−vap
g
n (−a),

Qn(a)=−e−va(−1)n pn(−a).
(3.21)
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(3.13) implies a=1−v−1/3y+O(v−2/3). Setting n as in (3.12), we claim that

a(s, y)=lim
vQ.
Pn(a), b(s, y)=lim

vQ.
Qn(a). (3.22)

If so, the limit functions a, b satisfy the differential equations

“sa=ub,

“sb=ua−yb,
(3.23)

as a consequence of (3.8), and

“ya=u2a−(uŒ+y u) b,

“yb=(uŒ−y u) a+(y2−s−u2) b,
(3.24)

as a consequence of (3.10). From (3.8) one immediately obtains pg
n (−1)=

(−1)n pn(−1)=<n
k=1(1−Rk). One has the limit <.

k=1 (1−Rk)=e
v since

e−v
2+vN0 <n

k=1 Nk(1−Rk)
−1 has an interpretation as a probability distribu-

tion function. (24) Therefore the initial conditions to (3.24) are

a(s, 0)=−b(s, 0)=e−U(s), U(s)=−F
.

s
u(x) dx. (3.25)

The scaling limit of Gn(a) as defined in Eq. (3.5) is the function

G(s, y)=F
s

−.
a(sŒ, y) a(sŒ, −y) dsŒ

=a(s, −y) “ya(s, y)−b(s, −y) “yb(s, y), (3.26)

where the second equality can be verified by differentiation with respect to
s and using the identity

a(s, y)=−b(s, −y) e
1
3 y
3−sy, (3.27)

itself being a direct consequence of (3.24) and (3.25). Putting these pieces
together we obtain as scaling limit for the distribution functions Fx, t(n),

Fy(s)=
d
ds
(G(s+y2, y) FGUE(s+y2)). (3.28)

The shift in (3.28) by y2 comes from the fact that Fy(s) is evaluated for
constant t=v+12 v

1/3y+O(v−1/3).
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In conclusion we arrive at the scaling function g(y) as defined in the
Introduction. From (1.6), with l=1

2 and A=2 for the PNG model, and
(3.11) we obtain

g(y)=F s2 dFy(s). (3.29)

As already mentioned, except for (3.10), all our relations are derived in
refs. 12 and 13, and the existence of limits is proven with Riemann–Hilbert
techniques. For completeness let us collect some more properties of a
shown in ref. 12:

a(s, y)Q 1, as sQ+.,

a(s, y)Q 0, as sQ −.,

a((2y)1/2 x+y2, y)Q 1, as yQ+.,

a((−2y)1/2 x+y2, y)Q
1

(2p)1/2
F
x

−.
e−

1
2 t
2
dt, as yQ −..

(3.30)

Therefore Fy(s) is asymptotically Gaussian and we recover g(y) 4 2 |y| for
large y.

4. NUMERICAL DETERMINATION OF THE SCALING FUNCTION

The key object in determining the scaling functions g(y), f(y) is the
Hastings–McLeod solution (21) to Painlevé II, u(s), which is the unique
solution to

uœ=2u3+su (4.1)

with asymptotic boundary conditions (3.17) and (3.19). Tracy and
Widom (11, 25) integrate (4.1) numerically with conventional differential
equation solvers using the known asymptotics at s=±.. The precision
achieved with this technique does not suffice for our purposes, since we
need u(s) as starting values (3.25) for the differential equations (3.24). We
develop here a different method to obtain u(s), in principle with arbitrary
precision. Next the functions a(s, y) and b(s, y) have to be determined,
which directly leads to values for the distribution functions Fy(s). They
have to be further integrated with respect to s in order to obtain their
variance, which is the desired scaling function g(y). The Taylor expansion
method to be explained intrinsically produces not only function values at a

266 Prähofer and Spohn



point but also higher derivatives. Therefore we obtain f(y) not by
numerically differentiating g(y) but rather by direct calculation via the
knowledge of “2yFy(s).

In a first step, to obtain reliable approximations to the Hastings–
McLeod solution, we need to guess its initial data at some finite s0 by using
asymptotic expansions around ±.. Any initial data u(s0)=u0, uŒ(s0)=u1
give rise to a maximal solution, ũ(s) of (4.1), which admits analytic con-
tinuation to a meromorphic function on C. The only essential singularity
for Painlevé II solutions lies at .. If ũ(s) is close to u(s) we can estimate
the difference D(s)=ũ(s)−u(s) by linearizing (4.1) around u(s). One
obtains that D(s)/D(0) is of order exp(D(s)) if (D(s), DŒ(s)) is in the
unstable subspace and of order exp(−D(s)) for the stable subspace, where
D(s) % − 13 (−2s)

3/2 for s° 0 and % 2
3 s
3/2 for s± 0. Note that on the

exponential scale we are looking at, derivation with respect to s leaves
invariant the order. Therefore the exponential orders of D(s) and DŒ(s) are
the same. Since generically initial values at s0 have a component in both
subspaces one obtains that D(s)/D(s0) is of order exp(|D(s)−D(s0)|) in the
range of validity of the linear approximation, |D(s)|° |u(s)|.

It turns out that the left asymptotic expansion in (−s)−1/2, optimally
truncated at large negative s0, gives rise to initial values with D(s0) only of
order exp(−13 (−2s0)

3/2). Thus control of the approximation always breaks
down near s=0. Approximations of the right asymptotics on the other
hand allow a, in principle, arbitrary precision on any given finite interval.

For sQ. the deviations of u(s) from the Airy function can be
expanded in an alternating asymptotic power series with exponentially
small prefactor,

uright, n(s)=−Ai(s)−
e−2s

3/2

32p3/2s7/4
C
n

k=0

(−1)k ak
(23 s

3/2)k
. (4.2)

The coefficients are a0=1, a1=
23
24 , a2=

1493
1152 ,..., and can be obtained via the

recursion relation

an=Ai (3)n +
3
4 nan−1−

1
8 (n−

1
6)(n−

5
6 ) an−2 for n \ 0 (4.3)

with initial conditions a−1=a−2=0.

Ai (3)n = C
0 [ k [ l [ n

Ain−lAil−kAik (4.4)

are the coefficients in the asymptotic expansion of Ai(x)3 and

Ain=
(6n−1)(6n−5)

72n
Ain−1, Ai0=1 (4.5)
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are the coefficients of the asymptotic expansion of the Airy function
itself, (26)

Ai(s) ’
e−

2
3 s
3/2

2`p s1/4
C
n \ 0

(−1)n

(23 s
3/2)n

Ain. (4.6)

Empirically we observe that for s0 ± 0 the optimal truncation in (4.2)
is n % 4

3 s
3/2
0 leading to an exponentially improved (relative) precision

:uright, n(s0)−u(s0)
u(s0)
: % exp1−8

3
s3/20 2 . (4.7)

The linear perturbation argument for ũ(s) with initial values ũ(s0)=
uright, n(s0), ũŒ(s0)=u

−

right, n(s0), n=[
4
3 s
3/2
0 ], is now valid for a slightly smaller

interval than [−2s0, 33/2s0]. For example, by choosing the interval
[−21/3s0, s0] and gluing ũ(s) at the boundaries smoothly to the optimally
truncated asymptotic expansions, the maximal relative error of ũ(s) with
respect to the Hastings–McLeod solution is of order e−4/3s

3/2
0 . For our

purpose it turns out that we do not need values with s < −20. On the other
hand, to access large values of y in (3.15), because of the shift in (3.15), we
need u(s) for large s with high precision. uright, n(s) is numerically costly to
evaluate for large s, so we finally choose s0=100 and integrate in the
interval [−20, 200]. This requires a maximal working precision of 1500
digits and, given the integration of (4.1) is precise enough, ũ(s) and u(s)
coincide in the first 1000 digits for s ¥ [−20, 115] and still up to 50 digits
at s=200, where u(s) % 10−820. In the sequel we drop the distinction
between u(s) and its numerical approximation. The arithmetic computing is
done partially with Mathematica® and for the computationally intensive
tasks with the C++-based multiprecision package MPFUN++. (28)

To solve initial value problems for ordinary differential equations
highly sophisticated iteration schemes are available, like Runge–Kutta,
Adams–Bashford, and multi-step methods. For arbitrary high (but fixed)
precision results, all these methods become ineffective, since the step size is
a decreasing function of the required precision goal for the solution and
tends to become ineffectively small. The only remaining choice is to Taylor
expand the solution at a given point. The step size is limited by the radius
of convergence only and the precision is controlled by the error made in
truncating the Taylor series at some order. (27)

u(s) is expanded at s0 as

u(s)=C
n \ 0
un(s−s0)n. (4.8)
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For the Painlevé II equation the expansion coefficients un at s0 are deter-
mined by u0=u(s0), u1=uŒ(s0) and

un+2=
2u (3)n +s0 un+un−1
(n+2)(n+1)

, (4.9)

where u (k)n =;n
j=0 un−ju

(k−1)
j are the expansion coefficients of u(s)k at s0,

u (1)n =un. We include the factorial into the expansion coefficients instead of
taking the bare Taylor coefficients, in order to reduce the workload from
multiplications by binomials when multiplying two expansions numerically.

Numerically we find that the Hastings–McLeod solution does not
have any pole in a strip |Im(s)| < 2.9. To have a safety margin we choose a
step size one for the extrapolation of the expansion (4.8).

We take the starting values u(s0), uŒ(s0) from (4.2) at s0=100. The
coefficients of the functions U(s), V(s), see (3.7) and (3.12), when expanded
around s0, as in (4.8), are given by

Un+1=
un
n+1

, Vn+2=
u (2)n

(n+2)(n+1)
, n \ 0, (4.10)

and V1=u
4
0−u

2
1+s0u

2
0, leaving unspecified the yet unknown integration

constants U0=U(s0) and V0=V(s0). The higher expansion coefficients of
u, uŒ, U, and V are independent of the values for U0 and V0 and are cal-
culated with the recursion relations (4.9) and (4.10). The values of u, uŒ, U,
and V at s=s0±1 are extrapolated, the expansion coefficients at s0±1
iterated. Then values are calculated at s=s0±2 by extrapolation, and
so on. A posteriori we assign to U(s0) and V(s0) values, such that
U(200)=0=V(200). The numerical errors from iterating (4.9) and from
truncating (4.8) can be neglected compared to the uncertainty originating
from the initial conditions. At the end of this first step we have at our dis-
posal the expansion coefficients for u, uŒ, U, V at the integers in the interval
[−20, 200]. For the convenience of the interested reader let us just state
the values at s=0 up to 50 digits,

u(0)=−0.367061551548078427747792113175610961512192053613139,

uŒ(0)=0.295372105447550054557007047310237988227233798735629,

U(0)=0.336960697930551393597884426960964843885993886628226,

V(0)=0.0311059853063123536659591008775670005642241689547838,

which might be used as starting values for a quick conventional integration
of Painlevé II to reproduce parts of our results with much less effort but
also less precision. Tables can be found at ref. 29.
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The next step is to determine a(s, y), b(s, y) at s0 ¥ {−20,..., 200} in
the interval y ¥ [−9, 9] employing (3.24) and (3.25). Setting

a(s, y)= C
m, n \ 0

am, n(s−s0)m (y−y0)n,

b(s, y)= C
m, n \ 0

bm, n(s−s0)m (y−y0)n,
(4.11)

(3.11) becomes a recursion relation for the expansion coefficients,

am, n+1=
1
n+1

C
m

k=0
(u (2)k am−k, n−(k+1) uk+1bm−k, n−ukbm−k, n−1),

bm, n+1=
1
n+1
1bm, n−2−bm−1, n

+C
m

k=0
(−u (2)k bm−k, n+(k+1) uk+1am−k, n−ukam−k, n−1)2 ,

(4.12)

n \ 0, allowing one to determine a0, n, b0, n, n \ 0 upon the knowledge of
a0, 0, b0, 0. We integrate along ±y with an extrapolation step size of 18 . From
(3.23) one obtains the recursions

am+1, n=
1
m+1

C
m

k=0
ukbm−k, n

bm+1, n=
1
m+1
1 −bm, n−1+C

m

k=0
ukam−k, n 2 .

(4.13)

The expansion coefficients Gm, n of G(s, y) at (s0, y0), are determined from
(3.13) as

Gm, n=(n+1)(a
−
m, nam, n+1−b

−
m, nbm, n+1) (4.14)

where a−m, n, b
−
m, n are the corresponding expansion coefficients of a and b at

(s0, −y0).
To finally determine g(y) and its derivatives we write

g (n)(y0)=
dn

dyn0
C
s0 ¥ Z

F
s0+1

s0
(s−y20)

2 d
2

ds2
(G(s, y0) FGUE(s)) ds

= C
s0 ¥ Z

n! C
m \ 1
cm, n. (4.15)
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cm, n are the expansion coefficients of (s, y)W >ss0 (r−y
2)2 d

2

dr2
(G(r, y)

FGUE(r)) dr at (s0, y0),

cm, n=(m−2)(GF)m−1, n−2m(GF)m, n−2+
m(m+1)
m−1

(GF)m+1, n−4. (4.16)

Here

(GF)m, n=C
m

k=0
FkGm−k, n (4.17)

are the expansion coefficients of G(s, y) FGUE(s) and Fn=−;n
k=1

k
n VkFn−k

are the expansion coefficients of FGUE. Numerically the sum over s0 in
(4.15) is truncated to values inside [−15, 200], since outside contributions
turn out to be negligible at the chosen precision goal. After accomplishing
this program we keep values for g(y) at y ¥ 1

128 Z 5 [−9, 9] and for g (n)(y),
n=0,..., 4, at y ¥ 18 Z 5 [−9, 9] with an accuracy of about 100 digits (a
table in ASCII format is available online at ref. 29). For interpolating these
values we used the Interpolation-function of the Mathematica®

package yielding best results due to the high precision data with an inter-
polation order of 57.

5. DISCUSSION OF THE SCALING FUNCTION

There have been numerous attempts to approximately determine
g( · ). (4, 8, 30–32) For historical reasons a different scaling function, F( · ), is
analyzed in some of these works. The relation to our scaling function g( · )
is

F(t)=(t/2)2/3 g((2t2)−1/3), resp. g(y)=2y F(1/(21/2y3/2)). (5.1)

Note that by (1.6) the large y behavior of g is fixed by definition as
g(y) ’ 2 |y|. The special value g(0)=1.1503944782594709729961 is the
Baik–Rains constant. (6, 12) In the literature the universal amplitude ratio
RG=2−2/3g(0)=0.7247031092 and the universal coupling constant gg=
g(0)−3/2=0.810456700 have been investigated. Approximate values have
been determined by means of Monte-Carlo simulations for the single step
model, (31) numerically within a mode-coupling approximation, (1, 8, 30) and
even experimentally for slowly combusting paper (33) yielding estimates for
g(0) within reasonable ranges around the (numerically) exact value indi-
cated.
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Fig. 2. The scaling function f(y) versus y in a semilogarithmic plot. The dotted line
exp(−0.295 |y|3) is drawn as a guide to the eye for the large y asymptotics of f.

In Fig. 2 the scaling function f(y)=1
4 gœ(y) is shown as determined

by the multiprecision expansion method explained in the previous section.
We estimate its large y asymptotics as

log f(y) % −c |y|3+o(|y|) for yQ.. (5.2)

The cubic behavior is very robust and numerical fits yield about
2.996–2.998 quite independently of the assumed nature of the finite size
corrections. The prefactor c=0.295(5) has a relatively high uncertainty
because of the unknown subleading corrections. Even though unaccessible
in nature we estimate the error term, as indicated in (5.2), to be sublinear
or even only logarithmic from the numerical data. Possibly, the exact
asymptotic behavior could be extracted from a refined asymptotic analysis
of the Riemann–Hilbert problem.

Colaiori and Moore (1, 34) tackled the same scaling function by com-
pletely different means. Starting from the continuum version of the KPZ
equation they numerically solved the corresponding mode-coupling equa-
tion, (4, 8) which contains an uncontrolled approximation, since diagrams
which would renormalize the three-point vertex coupling are neglected.
Nevertheless a qualitative comparison of their result with the exact scaling
function f(y) shows reasonable similarity, cf. Fig. 3. Both functions are
normalized to integral 1 by definition. The mode coupling solution oscil-
lates around 0 for |y| > 3, whereas f(y) > 0 for the exact solution. We do

272 Prähofer and Spohn



0

0.1

0.2

0.3

0.4

0.5

0.6

-2 -1 0 1 2

y

f(y)

mode-coupling

Fig. 3. The exact scaling function f(y) compared to the mode coupling result of Colaiori
and Moore (1) (dotted line). Both functions are even.

not know whether this is a numerical artifact or an inherent property of the
mode-coupling equation. On the other hand, the second moments are
reasonably close together, 0.510523 for f(y), and 0.4638 for the mode-
coupling approximation. So is the value of the Baik–Rains constant
g(0)=2 > |y| f(y) dy for which mode-coupling predicts the value 1.1137.

From the solution to the mode-coupling equations one does not
directly obtain f(y), but rather its Fourier transform. The function G(y)
from ref. 1 is defined through

G(k3/2/27/2)=f̂(k)=2 F
.

0
cos(ky) f(y) dy. (5.3)

Moore and Colaiori predict a stretched exponential decay of G(y) as
3 exp(−c |y|2/3) (34) and numerically find a superimposed oscillatory behav-
ior on the scale |y|2/3. (1) In Fig. 4 f̂(k) is plotted as obtained by a numerical
Fourier transform of f(y). Indeed it exhibits an oscillatory behavior as can
be seen in Fig. 5 where the modulus of f̂(k) is shown on a semilogarithmic
scale. The dotted line in the plot is the modulus of the function

10.9k−9/4 sin(12 k
3/2−1.937) e−

1
2 k
3/2
, (5.4)
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Fig. 4. The Fourier transform f̂(k) of the scaling function f(y).

shifted by a factor of 1000 for visibility, which fits f̂(k) very well in phase
and amplitude for k ¬ 15. This behavior is not in accordance with the
results of Colaiori and Moore, since the oscillations and the exponential
decay of G(y) for the exact solution are apparently on the scale y and
not y2/3.
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Fig. 5. The modulus of f̂(k) on a semilogarithmic scale. The dotted line is a heuristic fit,
shifted by a factor 1000 for visibility.
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Note that f̂(k) is the scaling function for the intermediate structure
function

S(k, t)=F dx e ikxS(x, t) 4 2f̂(t2/3k). (5.5)

By Fourier transforming with respect to t we determine the dynamical
structure function,

S(k, w)=F dx dt e i(kx+wt)S(x, t) 4 2k−3/2f̊(w/k3/2), (5.6)

where

f̊(y)=F ds e iysf̂(s2/3)=2 F
.

0
dy y−1LŒ(y/y2/3) f(y) (5.7)

and L has the convenient representation

L(o)=2·32/3Ai(−3−4/3o2) sin(2o3/27). (5.8)

The correlation function (2.6) in Fourier space is given by

C(k, w)=2k−2S(k, w) ’ CKPZ(k, w)=def 4k−7/2f̊(w/k3/2), (5.9)

describing the asymptotic behavior at k, w=0. Note that C(k, w) > 0 by
definition, since Ohk, whkŒ, wŒP=dk, −kŒdw, −wŒC(k, w) for (k, w) ] (0, 0). The
anomalous scaling behavior in real space is reflected by the exponents for
the divergence of CKPZ(k, w) at k=w=0. In the linear case, the Edwards–
Wilkinson equation l=0 in (1.1), one easily obtains

CEW(k, w)=
D

w2+n2k4
. (5.10)

A 3d-plot of CKPZ(k, w) is shown in Fig. 6. away from k, w=0, especially
on the lines where k=0 and w=0 and the two symmetric maxima of
kW CKPZ(k, w) for constant w. Our numerical data yield for the singular
behavior at k=0, w=0,

CKPZ(k, w)=w−7/3(2.10565(1)+0.85(1) k2w−4/3+O(k4w−8/3)),

=k−7/2(19.4443(1)−52.5281(1) w2k−3+O(w4k−6)). (5.11)
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Fig. 6. The correlation function CKPZ(k, w) in Fourier space.

6. CONCLUSIONS AND OUTLOOK

For systems close to equilibrium many properties valid in generality
rely on detailed balance, amongst them in particular the link between cor-
relation and response functions. The KPZ equation does not satisfy
detailed balance, since the growth is directed. However, it has been specu-
lated that in 1+1 dimensions detailed balance is recovered in the scaling
regime. With our exact scaling function at hand, such a claim can be tested.

Detailed balance implies that the eigenvalues of the generator in the
master equation lie on the negative real axis. Thus autocorrelations in the
form OX(t) X(0)P can be written as the Laplace transform of a positive
measure. The structure function S(k, t) at fixed k is such an autocorrela-
tion. Using the scaling form (5.5) detailed balance would imply

S(k, t)=F
0

−.
n(|k|−3/2 dl) el |t| (6.1)

with n(dl) \ 0. In particular S(k, t) \ 0. From (5.4) we know that S(k, t)
oscillates around zero. Definitely, at |k| % 5 there is a negative dip,
cf. Fig. 4. Thus (6.1) cannot be correct.

The Bethe ansatz (35, 36) indicates that, for large system size, the density
of states is concentrated on an arc touching 0. If so, the integration in (6.1)
would have to be replaced by a corresponding line integral. It is not clear
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to us how to extract from the numerical knowledge of S(k, t) such a
representation.

Our main result is the exact scaling function f, see Fig. 3, for the two-
point function of the stationary KPZ equation in 1+1 dimensions.
‘‘Exact’’ must be qualified in two respects. Firstly f is given indirectly
through the solution of certain differential equations, which can be solved
numerically only with considerable effort. The errors are well controlled,
however. Secondly, we rely on universality, in the sense that the scaling
function is derived for the PNG model, which is one rather particular
model within the KPZ universality class. Of course, it would be most
welcome to establish the scaling limit also for other models in this class.

The KPZ equation (1.1) is a two-dimensional field theory and, in
spirit, belongs to the same family as two-dimensional models of equilib-
rium statistical mechanics, one-dimensional quantum spin chains, and
other (1+1)-dimensional quantum field theories at zero temperature.
While in the latter cases, there are a number of models for which the two-
point function can be computed, in the dynamical context such solutions
are scarce. In addition, the KPZ equation does not satisfy the condition of
detailed balance. Such nonreversible models are known to be difficult and
we believe that the PNG model is the first one in the list of exact solutions,
disregarding noninteracting field theories.

For the nonstationary KPZ equation with a macroscopic profile of
nonzero curvature the analogue of F0 is the Tracy–Widom distribution
function. In that case the full statistics of xW h(x, t) for large but fixed t is
available. (7) It is conceivable that an extension of the techniques used there
also admits a more detailed study of, say, the joint distribution of
h(x, t)−h(0, 0), h(xŒ, t)−h(0, 0). On the other hand the joint distribution
of h(0, t)−h(0, 0), h(0, tŒ)−h(0, 0) does not seem to be accessible. In the
representation through the directed polymers it means that space-like
points, even several of them, can be handled, whereas time-like points
remain a challenge.
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